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Absorption of energy quanta generated by a quantum point contact results in the inelastic current through a
double quantum dot placed nearby. In contrast to a single quantum dot, the inelastic current through the double
quantum dot is determined by the nonlocal current correlations in the quantum point contact, which results in
its sensitivity to the energy dependence of the quantum point contact transmission and can lead to suppression
of the inelastic current for a substantial range of transport voltages on the quantum point contact. We calculate
the inelastic current as a function of microscopic parameters of the circuit.
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An electronic system under nonequilibrium conditions
generates fluctuations of electromagnetic field due to relax-
ation processes. The spectrum of those fluctuations carries
valuable information about the microscopic properties of the
system and its electronic distribution. Finding a proper way
to measure the nonequilibrium noise becomes therefore an
important subject of experimental and theoretical
investigations.1–3 Recently, a double quantum dot �DQD� has
been proposed as a detector of nonequilibrium noise gener-
ated by nearby mesoscopic devices.3 The noise detection is
based on the generation of inelastic current through DQD
assisted by absorption of energy quanta emitted by the de-
vice. To implement the noise measurement, DQD is brought
into the Coulomb blockade regime with the highest-energy
electron localized in one of its dots hereafter referred to as
dot 1. Absorbing an energy quantum, an electron tunnels
from the low-energy state in quantum dot 1 to the excited
state localized in quantum dot 2, with the excitation energy �
being fixed by the gate voltages. The tunnel barrier between
the quantum dots is tuned to be much higher than the barriers
between the dots and the adjacent leads so that after each
interdot tunneling event the electron almost immediately es-
capes into the adjacent electron reservoir. Another electron
occupies quantum dot 1, and the system returns to the ground
state, with the unit of charge having been transferred through
DQD.1 The generated current is therefore proportional to the
noise power on the excitation frequency � /�. Therefore,
DQD realizes the frequency resolved noise detection and
provides information about the nonequilibrium processes in
the measured mesoscopic device. In view of this, it is impor-
tant to have a precise relation between the inelastic current
through DQD and the parameters of the mesoscopic circuit.

The idea of noise detection by DQD was experimentally
realized in measurements of the nonequilibrium noise spec-
trum generated by a quantum point contact �QPC�.1,2 In those
experiments, the QPC is brought in a strongly nonequilib-
rium regime by application of transport voltage. At the same
time, the plunger voltage applied to the QPC controls its
transmission. Theoretical calculations of the generated in-
elastic current have been performed in Ref. 3, where it has
been related to the nonequilibrium noise power SI�� /�� gen-
erated by QPC at the frequency � /�. This noise power is
given by the local current fluctuations in an arbitrary spatial
point of QPC,

SI
local��� = �

−�

�

d�ei����I�x,���I�x,0�� . �1�

Based on the energy conservation law one concludes that
when increasing the QPC transport voltage VQPC, the current
through DQD will start at the point VQPC

� =� /e, when the
quanta with energy � appear in the nonequilibrium noise
spectrum.4 A puzzling feature of the experimental measure-
ments is the independence of the threshold voltage VQPC

� of
the DQD excitation energy � for a finite range of energies,
contrary to the expectations based on the energy conserva-
tion law.1

In this Rapid Communication we provide a theoretical
description of QPC-DQD system in the nonequilibrium re-
gime that allows to relate experimental measurements of the
inelastic current to microscopic parameters. We show that
since DQD is an object extended over both sides of QPC,
local noise power �1� is not the relevant quantity for the
inelastic DQD current. Rather, the noise power absorbed by
DQD includes spatially nonlocal correlations of current fluc-
tuations at positions of two quantum dots. The relevant volt-
age power is given by

SV��� = ��Z�x1,���Î�x1,�� + Z�x2,���Î�x2,���2� , �2�

where Z�xi ,�� is the spatially dependent transimpedance of
the circuit, relating the current fluctuations in the QPC part
of the circuit to the fluctuations of electric potential at quan-
tum dot i, xi denotes the position of the quantum dot, and
�=� /� is the absorption frequency. The general expression
of the inelastic current through DQD can be written as

IDQD =
e3t0

2

�2�2SV��

�
� , �3�

where t0 denotes the interdot tunneling amplitude. The volt-
age noise power SV can be related to the direct current
through QPC by an analogy of the Fano factor SV
=2eRK

2 FV���IQPC, where RK=h /e2	25,8 k� is the quan-
tum resistance. The explicit expression for FV reads as

PHYSICAL REVIEW B 80, 081309�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/80�8�/081309�4� ©2009 The American Physical Society081309-1

http://dx.doi.org/10.1103/PhysRevB.80.081309


FV��� = 
1 + tanh���

2T
�coth� eV − ��

2T
��

	
�d
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+��r
�2�f
+��
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R�

2�d
�t
�2�f

L − f


R�
, �4�

where t
 and r
 are the transmission and reflection amplitudes
of QPC at energy 
 and zi=Z�xi ,�� /RK is the dimensionless
transimpedance. The Fermi distributions in the left �source�/
right �drain� reservoirs of QPC are denoted as f


L/R. Their
chemical potentials differ by the QPC transport voltage and
can be written as �L/R= �eVQPC /2, with the chemical poten-
tial in the unbiased QPC being taken as zero. For zero tem-
perature and for the absorption frequency �=� /�, Eq. �4�
simplifies to

FV��

�
� = �eV − ��

�−eV/2
eV/2−�d
�z1r
+�t
 − z2t
+�r
�2

2�−eV/2
eV/2 d
�t
�2

. �5�

Using Fano factor �4�, the expression for the generated in-
elastic current can be cast in the form of

IDQD = 2eIQPCRK
2 FV��/���DQD/�2, �6�

where �DQD=
e3t0

2

�2 is the DQD rectification factor.
The presence of nonlocal correlations substantially modi-

fies the resulting noise spectrum. So, while the energy depen-
dence of the QPC transmission is not essential for local cur-
rent fluctuation �1�,3–5 it becomes crucial for the spatially
nonlocal fluctuations of currents and corresponding poten-
tials Eq. �2��. In particular, the noise can be substantially
suppressed if the condition

z1r
+�t
 − z2t
+�r
 = 0 �7�

is fulfilled for energies 
 within the transport voltage win-
dow. Let us assume that the energy dependence of the QPC
transmission in the form

�t�
��2 = exp�− 
/W� + 1�−1, �8�

where the energy scale W is related to the curvature of the
QPC potential barrier. Then, substituting Eq. �8� into Eq. �7�
we obtain the ratio of transimpedances at which the inelastic
current through DQD is completely suppressed, z1 /z2
=exp� / �2W��. For this ratio of impedances condition �7� is
fulfilled for each energy 
. Then the DQD current remains
suppressed as long as the deviation of the QPC transmission
from the assumed dependence Eq. �8�� remains small for
energies 
 within the transport voltage window. The voltage
Fano factor as a function of transimpedance ratio z1 /z2 is
shown in Fig. 1�a� for the QPC transmission given by Eq.
�8�. One can see that the nonlocal voltage fluctuations are
suppressed at z1 /z2	1.7.

The deviations of the QPC transmission from form �8�
can be expected for the electron energies far from the top of
the potential barrier. Those deviations can also be induced by
the distortion of QPC potential barrier due to the applied
transport voltage. Therefore, Eq. �7� determines the regime,
when the threshold voltage VQPC

� is a nonuniversal quantity.
It is determined not by the energy conservation condition but
rather by the form of the QPC potential barrier that itself is a
nonlinear function of the applied transport voltage.

To illustrate those findings, the inelastic current through
DQD and the voltage Fano factor as a function of QPC trans-
port voltage are shown in Figs. 1�b� and 1�c�. For panels �b�
and �c� we assumed the energy dependence of QPC transmis-
sion �t�
��2= exp�−
 /W�+1�−2, which is different from Eq.
�8�. This dependence is shown in the inset to panel �b� by the
solid line. Despite the deviation of the transmission from Eq.
�8� condition �7� is fulfilled in a wide range of the energies 

for z1 /z2=4. That results in a suppression of IDQD and of the
Fano factor in a wide range of QPC transport voltages ex-
ceeding the value � /e following from the energy conserva-
tion law. The DQD current starts at the voltage when the
deviation of the QPC transmission from Eq. �8�, and hence
the violation of condition �7� becomes substantial. In con-
trast, for the value of z1 /z2=6 that does not respect Eq. �7�,
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FIG. 1. �Color online� �a� Voltage Fano factor
FV�� /�� as a function of transimpedance ratio
z1 /z2. Inset: energy dependence of QPC transmis-
sion T�
�= �t�
��2 resulting from Eq. �8�. Panels
�b� and �c� show the inelastic DQD current �b�
and the Voltage Fano factor FV�� /�� �c� as a
function of QPC transport voltage for z1 /z2=4
and 6. Inset to panel �b�: adopted energy depen-
dence of QPC transmission T�
� �solid line� de-
viates from the QPC transmission given by Eq.
�8� �dots�. �d� Inelastic DQD current vs QPC
transport voltage for two different energy depen-
dencies of QPC transmission. Inset: adopted en-
ergy dependencies of QPC transmission ampli-
tude. Other parameters are relevant for the
experiment in Ref. 1.
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the DQD current starts at VQPC=� /e as follows from the
energy conservation condition.

The suppression of DQD inelastic current can also result
from plateaulike features in the energy dependence of QPC
transmission. This is illustrated in Fig. 1�d�, where DQD
current is calculated for symmetric couplings z1=z2 and for
two different dependencies t�
� shown in the inset. The pla-
teau in the t�
� results in the suppression of DQD current in
a range of QPC voltages substantially exceeding the energy
conservation threshold.

In what follows we introduce the theoretical model for the
coupled QPC-DQD system and outline the derivation of the
presented results. Since the maximal inelastic current is ob-
served when a new conducting channel is opening in QPC,
we concentrate on a single conducting channel of QPC. We
distinguish two species of electrons in QPC, namely, those
coming from the right and the left reservoirs, and we de-

scribe them by the fermion field operators �̂R/L�x�.6 The elec-
trons of each sort are in equilibrium with its own reservoir.
Taking the position of the QPC potential barrier at x=0, we
represent the field on each side of it as

�̂�x� =� dk

2�
��̂L�k�ei�pF+k�x + r
e

−i�pF+k�x�

+ �̂R�k�t

�e−i�pF+k�x�, for x � 0, �9�

�̂�x� =� dk

2�
��̂R�k�e−i�pF+k�x + r


�ei�pF+k�x�

+ �̂L�k�t
e
i�pF+k�x�, for x � 0. �10�

Here pF denotes the Fermi wave vector at zero transport
voltage.

We assume that the quantum dots are situated far away
from the potential barrier of QPC, one on each side of it �see
experimental setup of Ref. 1�. The structure of the interaction
between DQD and QPC channels plays a crucial role for the
generation of inelastic current, determining the transimped-
ance Z�xi ,��. Due to the presence of external electrodes, the
effective interaction becomes screened and time retarded.
Moreover, the presence of QPC violates the spatial homoge-
neity of the interaction. Therefore, we can write the interac-
tion term in the action in the form

Aint = − e2 �
i=1,2

� dx� dtdt�Ui��x�, �x − xi�,t − t��n̂�x,t�n̂i�t�� .

�11�

Here n̂1 and n̂2 are the particle number operators in each
quantum dot, and n̂�x� is the operator of density fluctuations
in the conducting channel at the point x. The forward and
backward inelastic scattering amplitudes in the QPC con-
ducting channel are given in terms of Fourier transforms
�dxe−iq�x−xi�Ui��x� , �x−xi�� at wave vectors �q�� pF and q
= �2pF. We assume that the interaction is strongly screened,
and it takes place only in a small region of the size of the
screening length around each quantum dot. Then the behav-
ior of scattering amplitudes at small wave vectors is smooth,

and we can approximate Ui��q�� pF�	Ui�q=0��Ui
f for the

forward scattering. For the backward scattering we obtain
Ui

b��2pF�=Ui��2pF�e�2ipFxi. Taking into account the finite
size of a quantum dot, one has to integrate over xi within that
size, which greatly diminishes the backscattering amplitude
because of the rapidly oscillating factors e�2ipFxi. On that
account we neglect the backscattering amplitudes in what
follows.

In the detection regime, the total occupation of DQD is
fixed to n1�t�+n2�t�=1. This allows us to use a pseudospin
1/2 description of DQD. We associate the states localized in
the quantum dots 1 and 2 with the spin-up and spin-down
states, respectively. The charge transfer between the two
quantum dots corresponds to the spin flip between the
ground-state spin up and the excited state spin down. Inter-
action term �11� can be separated into the interaction with the
total charge of DQD and the interaction with the z compo-

nent of DQD pseudospin, Ŝz= n̂1− n̂2. Only the latter is rel-
evant for the generation of DQD inelastic current. Note that

the product �̂=eŜz is proportional to the operator of the
DQD dipole moment. Omitting the interaction with the total
charge of DQD, we remain with the interaction between the
dipole moment of DQD and dipole fluctuations of electric
potential generated by QPC, which in the Fourier-
transformed form reads as

Aint = −� d�

2�
P̂����̂�− �� . �12�

Here the dipole fluctuations of QPC potential P̂��� are given
by

P̂��� = eU1
f ���n̂�x1,�� − U2

f ���n̂�x2,��� . �13�

Furthermore, introducing the spatially dependent transim-
pedance Z�xi ,��= 1

vF
Ui

f and using the representation of the
electric current operator in the basis Eqs. �9� and �10��, we

can express the dipole fluctuations P̂��� in terms of the Fou-
rier transform of the current operator at frequency �,7–9

P̂��� = �
i=1,2

Z�xi,��Î�xi,�� . �14�

At this point it becomes evident that the dipole moment in-
teracting with DQD involves spatially nonlocal correlations
of QPC current. In the case of symmetric circuit, U1

f =U2
f , the

transimpedance becomes independent of coordinate. Its ex-
pression in terms of the elements of effective electric circuit
is provided in Ref. 3.

The generated inelastic current is calculated perturba-
tively in the lowest order of QPC-DQD interaction employ-
ing the Keldysh technique,10,11 resulting in the final expres-
sion for DQD current �6�. The diagrammatic representation
of the first nonvanishing contribution to the inelastic current
is shown in Fig. 2; the details of calculations are reported as
a supplementary material.9

In conclusion we note that the generation of inelastic
DQD current can be considered as a kind of a Coulomb drag
experiment. Indeed, the diagrammatic representation for the
inelastic current Fig. 2�d�� looks very similar to the dia-
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grams for the drag current.8,12 To realize the drag, the
particle-hole �p-h� symmetry has to be violated in both the
drive �QPC� and the drain �DQD� parts of the circuit. The
violation of the p-h symmetry in DQD is obvious because of
the asymmetric charge distribution between the quantum
dots. The violation of p-h symmetry in the QPC part of the
circuit requires a more careful consideration because this part
of the circuit is in strong nonequilibrium. This difference
between the two parts of the circuit can be noticed in the
form of the diagram in Fig. 2�d� for the generated inelastic
current. The QPC part of the diagram consists of the non-
equilibrium voltage noise operator SV instead of the cor-
relator of three current operators known from the perturba-
tive calculations of the Coulomb drag.12 Thus the asymmetry
to the p-h transformation in the driving part of the circuit
should be exhibited not by the fluctuations of the current
through QPC but rather by the induced fluctuations of the
voltage on DQD. This fact is reflected by the appearance of

the transimpedances in Eq. �7�. Moreover, since DQD-QPC
circuit is a spatially inhomogeneous system, the interactions
that transfer the energy of charge fluctuations between the
drive and the drag parts of the circuit can depend on the
position in space. This dependence is reflected in the differ-
ent transimpedances z1 and z2. In that regard, relation �7� is
understood as a condition of the particle-hole symmetry of
the induced voltage fluctuations with frequency � /�, under
which the Coulomb drag is suppressed. For the case of equal
transimpedances condition �7� reduces to the condition of the
particle-hole symmetry for the fluctuations of the QPC cur-
rent.

To summarize, a crucial feature of DQD as a noise detec-
tor is its sensitivity to the nonlocal current fluctuations at
QPC. The nonlocal spatial structure of the absorbed noise
quanta can lead to the suppression of DQD current beyond
the energy conservation threshold � /e as observed in
experiment.1 This effect represents a profound feature of the
current voltage characteristics of QPC-DQD circuit that has
no analogy in the shot-noise-induced current through a single
quantum dot.13 It may result from a special relation of local
transimpedances �7� as well as from special features in the
energy dependence of the QPC transmission. Condition �7�
suggests the use of DQD as a measurement device for the
energy dependence of QPC transmission.
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FIG. 2. Diagrammatic representation: �a� vertex of QPC dipole

moment P̂; �b� vertex of DQD dipole fluctuations �̂; �c� DQD cur-

rent vertex ÎDQD; and �d� diagram for DQD current in the second
order of interactions. SV is nonlocal voltage noise �2�, and � is the
DQD rectification factor. Solid and dashed lines denote the one
particle Green’s functions in QPC and in DQD, respectively.

A. L. CHUDNOVSKIY PHYSICAL REVIEW B 80, 081309�R� �2009�

RAPID COMMUNICATIONS

081309-4


